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Summary. The electroweak interaction between electrons and nucleons destroys 
the mirror symmetry of an atom. The size of the effect depends on the weak 
interaction constants as well as on the atomic structure. Small-scale experiments 
studying atomic parity non-conservation can thus give a quantitative test of the 
standard model for the electro-weak interaction - provided the atomic structure 
is sufficiently well understood. The increasing experimental accuracy, in particu- 
lar for Cs, raises new demands on atomic theory. The various contributions to 
the parity non-conserving electric dipole transition matrix element are discussed 
together with the methods used to calculate them. The uncertainty in the atomic 
calculation is estimated. A discussion of  radiative corrections with emphasis on 
the role of the top quark mass is also given. 
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1. Parity non-conservation 

The fundamental laws of physics, as they were known until 1956, did not 
distinguish right from left and could never tell a physical event from its mirror 
image. This mirror symmetry on a fundamental level was first questioned by 
Purcell and Ramsey [ 1], who suggested that an electric dipole moment e.g. of  a 
neutron, although violating mirror symmetry - or "pari ty" - could not be ruled 
out without experimental evidence. The year 1957 brought the discovery [2] that 
parity is not conserved in radioactive fl-decay, leading to a rapid development of 
theories for the weak interaction responsible for the process. At first sight, this 
might not seem to have any impact on atomic or molecular physics, where the 
nuclear charge does not change. However, the successful standard model for 
electroweak interactions [3] predicts that the weak interaction be mediated by 
intermediate vector bosom, both a charged boson W+ and a neutral boson, Z0. 
The existence of weak neutral currents was demonstrated in 1973 in high-energy 
neutrino-nucleon scattering experiments [4]. Being as heavy as a strontium atom 
or a benzene molecule, these vector bosons can only mediate a very short-range 
interaction, leading to an increase of the effect with increasing nuclear charge. In 
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a pioneering paper in 1974, Bouchiat and Bouchiat [5] pointed out that the small 
effect of the weak neutral current interaction grows as Z 3 and could, in fact, lead 
to observable effects in heavy atoms. The interference of a magnetic dipole 
transition with a transition of electric dipole character between the same states, 
allowed only through the parity non-conserving weak interaction, would make 
even such an apparently symmetric object as an atom optically active. After an 
initial period of confusing and contradicting experimental results [6], the influ- 
ence of weak interaction on atoms is now well established and in essential 
agreement with theoretical predictions. The task for atomic theory and experi- 
ment in collaboration is no longer to observe the effect but to deduce the relevant 
interaction constants. The calculations of parity non-conserving properties in- 
volve several subfields of physics, making it a stimulating and rewarding field, 
but also raising barriers. The form of the interaction and its strength depend on 
the model for electro-weak interaction. Some of the properties depend on the 
nuclear structure. The atomic calculations themselves are demanding due to the 
need to treat two perturbations - the external electric field, sensitive to the outer 
part of the electron wavefunction, and the weak interaction which takes place 
within the nucleus. To reach the necessary accuracy, correlation effects must be 
included together with relativity. The ever-increasing experimental accuracy 
increases the demand on atomic theory, which have stimulated the development 
of relativistic treatments. With sufficient accuracy, high precision tests are 
possible of the radiative corrections to the weak interaction theory and the 
advances in both theory and experiment may give a quantitative determination 
of the weak mixing angle Ovr, second in accuracy only to that obtained in the 
recent Z0 mass determination. 

The first efforts concentrated on bismuth [7-10]. Experimental as well as 
theoretical results have now been obtained also for the neighbouring atoms T1 
[11-14] and Pb [15-17], as well as for the alkali atoms Cs [18-32, 13-14]. 
Today, the most accurate experimental results have been obtained for Cs, which 
is also the system where the atomic structure problems are least severe and in this 
paper we restrict ourselves to discuss the calculations for Cs. We review the 
methods that have been used and discuss the prospects for obtaining even higher 
accuracy. An accurate experiment on hydrogenic systems would of course be the 
joy of particle physicists, with no uncertainty related to the atomic wavefunction. 
However, the experiments have proven more difficult than hoped initially [33]. 
Recently, an experiment studying PNC in excited states of helium has been 
suggested [34], but no result has yet been reported. It is a challenge for us who 
work on calculations for many-electron systems to show that also the experi- 
ments for heavy atoms can, indeed, provide useful, reliable information. 

2. Weak interactions and the atomic wavefunction 

2.1. The parity non-conserving weak interaction 

The weak interaction in heavy atoms is dominated by the nuclear spin-indepen- 
dent ("nuclear-vector electron-axial" current) part of the electron-nucleus inter- 
action which can be written in terms of a Hamiltonian [5]: 

h PNC _ GF 
(1) 2v/~ Qw¢jv(r)75. (1) 
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Here GF = Gu(hc) 3 = 89.6 eV fm 3 ~ 2.22 x 10 -14 a.u. is the weak interaction con- 
stant. The short-range character of  the interaction is accounted for by pN(r), 
which is a normalized combination of the neutron and proton densities in the 
nucleus and is usually chosen as a Fermi distribution. The change of parity is 

(0 1) 
= , which interchanges the upper and produced by the Dirac matrix ?5 1 0 

lower component of a relativistic wavefunction. The weak charge, Qw, of the 
nucleus is defined as: 

Qw = - 2 [ ( 2 Z  + N ) C I ,  + ( Z  + 2N)CId] 

in terms of  the vector coupling constants of the up and down quarks to the 
neutral current, given to lowest order by the "tree-level" expressions: 

1 4 Clu = - ~  + 5 sin20w 
1 2 • 2 Cld=~--~Sln Ow 

with the weak angle Ow related to the ratio of the vector boson masses through 
the relation cos O w = M w / M  z,  and the present world average given by 
sin 20w = 0.226 _+ 0.005 [35]. The values of these parameters are changed by 
radiative corrections [36, 37], which depend to some extent on the unknown 
masses of the Higgs boson and of  the top quark. Earlier evaluations [36] of these 
corrections were based on a top quark mass of mt = 45 GeV/c 2 which has now 
been ruled out by experiment. In addition, several definitions of  sin 20w exist, 
which are equivalent in lowest order, but differ significantly when radiative 
corrections are added. Some of these aspects will be discussed in Sect. 4.4. 

The Hamiltonian in Eq. (1) is derived from the current-current interaction 
induced by the exchange of  a Z0 boson between an electron and the nucleus. In 
addition to the dominating term (1) in the electron-nucleus interaction, there is 
one term involving the nuclear spin: 

H r ' N C  GF (1£ N - 1/2) 
(2) = X / ~  KZQN(r) I ( I  + 1) ~e," I (2) 

where /£N = 4 for the unpaired g7/2 proton of  133Cs and the interaction constant 
i s  K 2 ~ - - 0 . 0 5 .  

The weak interactions within the nucleus can lead to a helical current 
distribution, causing the nucleus to have an anapole moment [38, 39], defined as 
a = - re  S dr rZj(r) = aL leading to a vector potential A(r) = a 6(r). This moment 
gives rise to magnetic fields inside the system but vanishes outside. The ordinary 
electromagnetic interaction with an anapole moment leads to a term identical in 
form to the spin-dependent PNC interaction in Eq. (2): 

h P N C  GF •U (a) = ~ KaQN(r) ~ ~el"  I .  (3) 

Neglecting possible differences in the nuclear distribution, which have been 
found to have only a very small effect on the result, this interaction can be 
treated together with Eq. (2) by replacing Ka with K = Ka - K2(K -- 1/2)/x in Eq. 
(3). As pointed out by Flambaum et al. [39] amplifying effects in the nucleus may 
make this interaction larger than t,0"NC and they estimate K to fall in the range " (2)  
0.25-0.33. 

Khriplovich [40] also pointed out that the combination of the nuclear 
spin-independent weak interaction in Eq. (1) and the ordinary hyperfine interaction 
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can lead to a spin dependence of the PNC transition matrix element observed. 
Finally, the exchange of a Zo boson between the electrons leads to a 

two-electron interaction: 

HPNC 1 /q PNC GF 
(el-el) = 2  E "'g -- (1 --4sin2 0w) ~ (y~ +71)(1 --~i"  o~j)~a(ri -- r/). (4) 

i ~j N / ~  i ~j 

Blundell et al. [32] have calculated the effect of the electron-electron interaction 
in lowest order and found a contribution of the order 0.05% of the dominating 
effect due to the interaction in Eq. (1) [40]. The spin-dependent contributions are 
somewhat larger and enter at the percent level [32, 41-42]. However, by con- 
structing a proper linear combination (depending to some extent on the calcu- 
lated values for the respective transitions) of the experimental results for 
transitions involving different hyperfine levels, the influence of the spin-depen- 
dent part can be removed. Thus only the effect of the dominating term (1) needs 
to be calculated with high accuracy. 

The combination of Clu and Cld entering for heavy atoms is essentially 
orthogonal to that measured in high-energy experiments [44] and, even with a 
precision of a few percent, the atomic PNC experiments provide some of the 
most stringent limits to modifications of the standard model involving extra Z 
bosons [36]. The particle physics implications of the restrictions on Clu and Cld 
deduced from atomic physics will be discussed in more detail in Sect. 4.4. 

2.2. Observable effects 

In the presence of weak interaction Hamiltonians h PNC discussed in Sect. 2.1 an 
atomic wavefunction no longer has pure parity, but receives a small admixture of 
opposite parity. This makes possible an electric dipole transition from an initial 
state II) to a state IF) of the same parity, where, without the PNC admixture, 
normally only magnetic dipole (and possibly electric quadrupole, etc.) transitions 
would be allowed. We note that, since the matrix elements of h PNC are purely 
imaginary, all diagonal matrix elements of the dipole operator vanishes and h PNC 
can thus not lead to an electric dipole moment. Only the ratio of the parity 
non-conserving electric dipole transition matrix element, E] "NC to another matrix 
element can be measured (to cancel out an arbitrary phase factor), e.g. the ratio 
to M 1 in the optical rotation experiments, or to the vector Stark polarizability fl 
in the studies of hPNC-Stark interference. For the accurate PNC experiments 
[18, 19] on Cs, fl is the relevant quantity, and the calculation of fl will be 
discussed briefly in Sect. 4.2. Most of the discussions in this paper will concern 
the calculation of E PNC. 

To lowest order in the weak interaction (which should be adequate, consider- 
ing the smallness of GF) the PNC electric dipole transition matrix element 
between an initial state I and a final state F is given by: 

((FIOIx><XIHPNClI> (FIHPNClX)(XlDII> 

where D is the dipole operator and the sum runs over all excited states 2". In Eq. 
(5), L X and F represent physical states, which can be considered as solutions to 
an eigenvalue equation n I X ) =  Ex [X), although certain problems concerning 
this equation arise in the relativistic case, as discussed in Sect. 2.3. The PNC 
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transition matrix element can also be obtained using the PNC corrections to the 
wavefunctions, given to first order in the weak interaction by: 

(EI - H )  ]IPNC) = H PNC II ) (6) 

for the initial state, with an analogous equation for the final state F. Using these 
admixtures the PNC electric dipole transition element can be expressed as: 

E PNC = ( F  IO II PNc) + (FPNC [D l l~>. 
If  experimental matrix elements are available, they can be inserted in Eq. (5). 
This is the case for the electric dipole transition elements to the first few excited 
states in Cs, some of which have been obtained in a critical analysis of tabulated 
oscillator strengths and lifetime data undertaken by the Paris group [45]. The 
matrix elements of H pNc, on the other hand, are not directly available for 
experimental investigations. However, the PNC operator is closely related to the 
hyperfine interaction and a good estimate can be obtained by using the geomet- 
rical mean obtained on the hyperfine constants for the sl/2 and Pl/2 states 
involved. This method, discussed in more detail in Sect. 3.5, has been refined by 
Bouchiat and Piketty [26] and its connection to many-body calculations has been 
analysed by Hartley and Sandars [30], who also devised methods to improve the 
approximation. 

Equation (5) can also be evaluated with single-electron orbitals giving the 
first term in a many-body perturbation theory (MBPT) expansion, correspond- 
ing to the diagrams in Fig. 1. It is then, of course, necessary to consider 
many-body corrections. If desired, MBPT can be applied individually to the two 
matrix elements, as well as to the energies in the denominator of  Eq. (5). This 
approach has been used in the most complete calculation performed to date on 
PNC, by Blundell et al. [32], and bridges the gap between the ab initio 
approaches and the formalism implicitly used in the semi-empirical calculations. 

2.3. The relativ&tic Hamiltonian 

For the heavy atoms used in the study of  parity non-conserving effects, it is 
essential to use a relativistic description of the atom. A straight-forward general- 
ization of the non-relativistic many-electron Hamiltonian is obtained by adding 
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Fig. la-d. Diagrammatic representation of the lowest-order contributions to a parity non-conserving 
(PNC) electric dipole transition element. The wavy line represents the external electric field, the cross 
is the PNC interaction or the interaction of an electron EDM, a line with an up- (down-) going arrow 
represents an excited (core) orbital and a line with a double arrow represents a valence orbital 
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the electron-electron interaction Va to the sum of Dirac one-electron Hamiltoni- 
ans, hD, including the interaction with the nucleus: 

H = ~ h D ,  i+ ~ V,).=~ (cc~-p+flrnc2-Ze/r)i+ ~ V•. (6) 
i i > j  i i>]  

However, this Hamiltonian must be treated with a considerable amount of care. 
Due to the existence of negative energy eigenstates to the Dirac one-electron 
Hamilitonian h0, which correspond to positron states, the eigenvalue equation 
H T  = ET, has no normalizable solutions, as first noted by Brown and Raven- 
hall [46] and brought back to attention by Sucher [47] - for each eigenvalue E 
there exists a continuous infinity of combination of one-electron states, where 
one electron is in the negative energy continuum and the other high in the 
positive one, which have a total energy E. Each two-electron state could thus 
dissolve into the continuum if such excitations were allowed. Of course, they are 
not - an excitation into a negative energy state corresponds to annihilation of a 
positron and can only happen when the positron has already been created (or, 
alternatively formulated, if an excitation out of the negative energy state has 
already taken place) and the creation of a virtual electron-position pair corre- 
sponds to an excitation energy of 2mc 2. This problem arises whether the 
electron-electron interaction V12 is taken to be the pure Coulomb interaction 
V12 = e2/r~2, or includes also the Breit interaction which accounts for the effects 
of virtual transverse photons. To avoid these forbidden excitations, we may 
surround the many-electron Hamiltonian by projection operators for positive 
energy states or use a second quantized formulation to ensure a proper treatment 
of all states. Tile projection operators depend to some extent on the choice of 
potential defining the one-electron basis. Free-electron projection operators have 
the advantage of mathematical simplicity in momentum space, but are quite 
cumbersome to work with in configuration space. Direct solution for the 
two-electron equation using approximate projection operators has been de- 
scribed by Lindroth [48] and collaborators [49]. However, given the one-electron 
potential, one may also choose to generate an essentially complete basis set 
which can be used directly in a second quantized formulation. Projection 
operators are then trivially implemented as a restriction of the summation. The 
use of a basis set consisting of known analytical functions has been discussed e.g. 
by Grant [50] and by Goldman and Drake [51] and this approach has been 
followed by Quiney et al. [52]. Discrete numerical basis sets have been used by 
Johnson and collaborators [27, 53], and by Salomonson and Oster [54] who 
expressed their basis functions in terms of piecewise polynomials and in the 
values on the grid points, respectively, and also by Dzuba et al. [20] who perform 
separate summations over the bound states and over a discretized representation 
of the continuum. 

Most of the calculations discussed here have used the "Dirac-Hartree- 
Fock" (DHF, also known as "Dirac-Fock", DF) approximation as a starting 
point. The Hamiltonian is then divided as 

H = ~ h ° e + V ° ° r r = ~ (  " . Z e + u ) + ( ½ ~  V u - ~  ~ i,j  . (7) 

where the one-electron potential u is given in the DHF case by: 
O C t  

uOnV = Z (C] V1:(1 - P, : ) Ic)  (8) 
c 
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and the summation over occupied orbitals, c, is usually restricted to run only 
over the orbitals in the closed shell core, giving a spherically symmetric potential. 
The choice of u defines the orbital basis set and thus also the projection 
operators 2 + for positive energy states. Within the no-virtual pair approximation 
our goal is to obtain eigenfunctions not to H but to A +HA +, where A + assures 
that all electrons are in positive energy states. 

The validity of the DHF approximation is sometimes questioned [47], since 
it is often derived from a minimization of the expectation value of Eq. (6), which 
has no lower in an unconstrained variation. However, in the iterative process 
used to obtain the DF orbitals, the projection operators are imposed implicitly 
through the proper boundary conditions [50] corresponding to positive energy 
states for each electron orbital. The DHF potential can also be derived from 
Brillouin's theorem, requiring the vanishing of single excitations in first order of 
the residual electron-electron interaction Voorr. This holds also for the excitation 
of a single virtual electron-position pair and Mittlemann [55] has found that the 
DHF equations can be obtained by choosing projection operators that minimize 
the effect of single excitations. 

If the wavefunction is expressed in terms of an incomplete analytical basis 
set, problems may arise already at the one-particle level [56]. Cures for this 
"basis set disease" can be obtained by transforming the Hamiltonian to a 
non-relativistic form or by imposing relation between the basis for upper and 
lower components as reviewed, e.g. in Ref. [57]. 

2.4. Semi-empirical estimates 

The first estimate of the PNC-E1 transition matrix element in Cs was done in the 
pioneering work by Bouchiat and Bouchiat [5, 58] using an elegant extension of 
the non-relativistic Fermi-Segr+ method for hyperfine structrue combined with a 
relativistic correction factor ( ~  3 for Cs) which is considerably larger for the 
parity non-conserving weak interation than for the less singular hyperfine 
interaction. For the electric dipole matrix elements Bouchiat and Bouchiat 
used a modified Bates-Damgaard method, leading to E~NC=--1.33x 
lO-~li[e lao(Qw/-N). 

Soon after, Loving and Sandars [59] performed a relativistic calculation 
using a Green's type of central potential [60] with parameters chosen to give an 
agreement better than 1% with the observed eigenvalues for 6s~/2, 7s~/2, 6p m and 
7p~/2 levels. As a natural extension of Sandars' studies [61, 62] of the closely 
related problem of atomic electric dipole moments, they used a single-particle 
approximation to Eq. (5), which is a Dirac analogue of the inhomogeneous 
differential equation technique introduced by Sternheimer [63]. The dipole 
perturbed corrections Ii+> and If->, respectively, to the initial and final states 
were obtained as solutions to the equations: 

(~o +- e) - h o ) [ o  +-) = d l o )  (9) 

where co = (~f-ei)  and with the dipole operator given by d = er in the 
length form. The PNC electric dipole transition matrix element is then evaluated 
as :  

E~ yc = (f-IhPNCli> + <flhPNCli+>. (lO) 
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By direct insertion we see that: 

rx>< rdlo> 
(11) 

satisfies Eq. (9). We can see that Eqs. (10-11) correspond to that obtained for 
the diagrams in Fig. 1 from lowest order perturbation theory, using orbitals 
defined from the unperturbed Dirac equation. The inclusion of occupied orbitals 
in the summation over x in Eq. (11) may be surprising at first sight, but 
corresponds exactly to the diagrams in Fig. lc,d, where the excitation of an 
occupied orbital into a valence state is followed by a subsequent de-excitation 
from a valence electron into the core hole. The sign associated with the core line 
in Fig. lc,d is compensated by the opposite sign of the energy denominator 
obtained using ordinary diagram rules [64]. Lovirig]and Sandars were 
encouraged by the good agreement between their result E~Nc=--1.15 x 
10-11 i [ e I a0 (Q w / - N) obtained in this approach and that obtained by Bouchiat 
and Bouchiat [58], but also emphasize that, although this "constitutes a useful 
check on the single-particle calculations involved" it "cannot provide evidence 
concerning the accuracy of the single-particle approximation itself". They also 
point out that "core polarization and other many-body effects make contributions 
of the order 10-20% in the ground state hyperfine structure of the alkalis and are 
likely to give appreciable effects also for the PNC-E1 transition matrix elements. 
However, several years passed before these effects were calculated for Cs. 

The next calculation was performed by Neuffer and Commins [65] using a 
"Tietz" central potential [66] in the Dirac one-electron equation with the 
parameter chosen to give a 6s energy eigenvalue in agreement with experiment. 
They calculated explicitly the first four excited npl/2 states in this potential and 
compared the sum in Eq. (5) obtained using these states to the results obtained 
by solving the inhomogeneous differential equation (9), which automatically 
gives an implicit summation over all intermediate npl/2 one electron states in Fig. 
la,b. The effect of higher excited states was relatively small, reducing E~ NC by 
about 8% to -1.00 x lO-~li[elao(Qw/-N). From comparison with experimen- 
tal hyperfine structure they found that the p amplitude at the nucleus was about 
10% low, whereas the E1 matrix elements were overestimated by a similar 
amount. As these effects tend to cancel, Neuffer and Commins estimate that their 
final result is accurate to about 10%. 

In 1983, Bouchiat et al. [44] performed an extensive analysis of PNC in Cs 
and its implications. Their calculations were based on the Norcross semi-empir- 
ical potential in a Schr6dinger equation with an added term to account for the 
spin-orbit interaction. Correlation factors were included to account for the effect 
of relativity and a finite nuclear size. They also included a semi-empirical 
screening in the electric dipole operator, found to give about 6% reduction of the 
PNC-E1 matrix element and a final result of -0.97 x lO-I~i[e[ao(Qw/-N), 
with an estimated uncertainty of about 10%. 

2.5. Corrections to the central-field model 

Already from the variations in the results obtained in various central field 
models, it is obvious that corrections must be applied before the results can be 
relied upon. These corrections can be divided into different classes, e.g. as: 
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(i) Corrections to the effective central potential seen by the valence electron. 
These corrections will include a number of high order correlation effects which 
may not be easy to calculate. The main advantage of the semi-empirical 
approaches is the ability to reproduce some of these effects, discussed in more 
detail in Sect. 2.6. 

(ii) PNC "core polarization" in which the polarization of the core by the PNC 
interaction in (1) propagates to the valence electron (and to the other core 
electrons) via the ordinary Coulomb interaction, as illustrated in Fig. 2, below, 
and discussed in Sect. 2.6. 

(iii) Dipolar shielding in which the core electrons respond to the external electric 
field, leading to a shielding of the field seen by the valence electron (Fig. 3). Like 
the PNC core polarization, this effect can be treated relatively easily by standard 
self-consistent techniques, allowing the DHF potential to include these orbital 
modifications, as discussed in Sect. 2.6. The shielding will also be modified by the 
PNC admixtures in the core orbitals (Fig. 4). 

Fig. 2. Diagrammatic representation of the coupled (Dirac)-Hartree-Fock equation for a pseudo- 
scalar perturbation, such as the interaction with an electron EDM or the nuclear spin-independent 
part of weak electron-nucleus interaction 

Fig. 3. Diagrammatic representation of the wavefunction modification caused by an external electric 
field 

Fig, 4a-e, Examples of diagrams contributing to the total PNC electric dipole transition for a 
one-valence system 
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(iv) Complex many-body effects which are not included in (i) to (iii), above. 
These effects, discussed to some extent in Sect. 2.7, give contributions below the 
percent level for Cs, as first noted by Dzuba et al. [ 13]. 

2.6. The Dirac-Hartree-Foek equation and additional perturbations 

In the presence of an external perturbation h, not only the valence orbital, but 
also all the core orbitals get perturbed. To first order in the perturbation the 
orbital corrections [a h) satisfy the equation 

(ca - hDHF)[ ah) = (h + v h) [a) -- 6~h[a ). (12) 

The term, v h, which was not present in Eqs. (6) or (9), is the correction to the 
D H F  potential in Eq. (8) caused by the modification of the orbitals for the other 
electrons b. Keeping terms only to lowest order in the external perturbation, this 
potential correction is given by: 

co re  

vh= 2 ( (b lV ,2 (1 -P ,2 ) lbh )+(bh[V ,2 (1 -P ,2 ) lb ) )  (13) 
b 

which is added to the RHS of (12). This leads to a set of  coupled one-particle 
equations, which can be solved iteratively. No orthogonality has been enforced 
to the other occupied orbitals. The Hermiticity of the perturbation h makes 
(bla h) =-- (bh[a)  and all effects of this admixture within the core orbitals 
cancel, as discussed, e.g. by Heully and M~trtensson-Pendrill [67]. In general the 
energy correction 6eh=(a[h +vh[a) appears in Eq. (12), making the RHS 
orthogonal to orbital a. For odd parity operators, this term vanishes, however, 
as long as the unperturbed orbital ]a) has pure parity. 

Because of angular momentum restrictions, only the exchange terms enter 
when h is a pseudoscalar parity non-conserving interaction. A diagrammatic 
representation of  the equations for this case is shown in Fig. 2. A frequency-de- 
pendent external electric field described by a perturbation d exp icot leads to 
analogous equations which, however, include the frequency dependence. The 
perturbation corrections [a ±) to orbital [a) are obtained from equations 
analogous to Eqs. (14) and (13): 

(e. + co -- h D"F) [a ± ) = (d + v -+) [a) (14) 

with a frequency dependent potential correction: 
co re  

v +-= ~ (<b]V12(1-Vm2)]b+-)+<bZ-[V12(1-P12)lb)). (15) 
b 

The potential correction v + accounts for the shielding of  the applied electric field 
and also restore the equivalence of the length and velocity forms of  the dipole 
operator [22]. The parity conserving transition matrix element for the resonant 
transition i ~ f  where e) = E f  - -  Ei ~ ~f - ei, is then evaluated as ( f [d  + v + [i). 
As long as the potential from the valence electron(s) is not included in v ± it is 
not necessary to solve the equations for the frequency dependent corrections to 
the valence orbitals. For a frequency-dependent perturbation, the energy correc- 
tion term is replaced by orthogonalization to the resonant transition so that a 
term [ f ) ( f l d  + v +[i) is subtracted from the right-hand side of  the equation for 
li+>. 
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This powerful method of treating an additional perturbation, suggested by 
Sandars [68] in connection with the study of weak interactions, leads to the 
inclusion of several diagrams in perturbation theory at the Hartree-Fock (or 
DHF) level. Similar methods have been invented several times in different 
contexts under different names such as coupled-perturbed Hartree-Fock [69], 
randon-phase approximation (RPA) [70], Time-Dependent Hartree-Fock [71] 
and summation of single-particle excitations to all orders [72]. 

2.6. I. Doubly perturbed DHF orbitals. In the presence of the weak interaction or 
of an electron edm, all orbitals in (14) and (3-14) become parity mixed. These 
doubly perturbed orbitals are obtained by straight-forward generalization of 
Eqs. (12-15), leading to a new set of coupled equations, which we write in the 
more general time-dependent form analogous to Eq. (14). 

(ea +_ co - h o) [a +- PNc) = (d + v +-) [a PNC ) + (h PNC + v PNc) ]a -+ ) + v -+ PNC] a ) 

(16) 

where the parity-mixed frequency-dependent potential correction becomes: 

v-+PNC = c ~  e ( ( b P N c l l ( l _ p , 2 ) l b ± ) + ( b ~ - l l ( l _ p ~ z ) l b P N C )  
b k, r12 r12 

+ (b l 1---- (1-- PI2) Ib +-PNC) + (b ~PNC] 1--- (1-- Pl2) [b ) ) r,2 (17) 

For the pseudoscalar PNC operator in Eq. (1), only exchange terms contribute. 
The terms on the first line are evaluated with the PNC and dipole orbital 
admixtures already obtained, whereas the terms on the second line change with 
the solutions to Eq. (16) and must be treated iteratively. Both perturbations 
h PNc and d are odd parity operators and cannot on their own give rise to 
first-order energy shifts of an atomic orbital. The combination of the two 
perturbations, on the other hand, brings back the original parity, but since the 
weak interaction has purely imaginary matrix elements no energy shift arises in 
first order. The quantity of interest is instead the transition matrix element E~ Nc 
which can be obtained by evaluating the overlap of the RHS of equation for 
[i+PNC) with ( f [  giving an expression: 

EPNC= (fl(d-F V+)[iPNC) + (f[(hPNC-k vPNC )Ii+) + (f[v+PNCIi). (18) 

Alternatively, the overlap between I i) and the RHS for <f- '~c I may be 
evaluated, giving an equivalent expression. Subtraction of [ f ) E  PNc from the 
RHS for [i +PNC) (and of [f)(EPNC) * from the RHS of the equation for ]i +PNC)) 
gives the desired orthogonalization of the resonant transition. Figure 4 shows 
some of the corrections to the lowest order contribution in Fig. 1. 

3. Correlation effects 

The coupled-perturbed Dirac-Hartree-Fock equations discussed in Sect. 2.6 
often give a qualitatively correct description of a many-electron system and lead 
to inclusion of all many-body corrections involving only single excitations. 
However, correlation effects, which involve the simultaneous excitation of two or 
more occupied orbitals, often give effects which are of comparable importance 
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a 

Fig. 5 a - e .  D i a g r a m m a t i c  represen ta t ion  of  the lowest -order  cor re la t ion  effect on the valence orbi ta l  

and must be included in order to obtain reliable results. In this section we discuss 
the progress in the development of methods to include correlation effects for the 
problem of parity-nonconserving weak interactions in heavy atomic systems. 

3.1. Correlation effects on valence orbitals 

In a non-relativistic study of hyperfine structure in the alkalis, Lindgren et al. 
[73] noted that important correlation effects can be obtained by modifying the 
valence electron orbitals to approximate Brueckner orbitals. The lowest order 
corrections to the valence electrons are shown in Fig. 5a-d. Dzuba et al. [20] 
accounted for these orbital corrections by introducing a non-local correlation 
potential: 

exc core [ ] ] [ exc core 
S(~)= E E (alV121st)(StlV12'a)-E E (20) (ab l V121s)(Sl Vlelab ) 

s>~t a 8 - ~ - I ~ a - - l ~ s - - ~ t  s a>~b ~ a " ~ b - - ~ s  - I ~  

which depends, through e, on the energy of the orbital it acts on. The lowest 
order correction to the orbital of the valence electron o is then given by 

(% - ho)13o) = Q S ( ~ o ) I o )  = (1 - 1 o ) ( o  ])2;(Co)]o) = S ( ~ o ) 1 o )  - 3eo ]o )  (21) 

where the projection operator Q = ( 1 - 1 o > < o l )  makes the right-hand side 
orthogonal to the unperturbed orbital o. 

In perturbation theory the summations are often performed only over excited 
states, but, as the orthogonalization in Q is only performed to the orbital o itself, 
Eq. (21) allows admixtures of all other occupied orbitals (including negative 
energy states, as well as core orbitals in the relativistic case). As discussed in Sect. 
2.2 these admixtures correspond to excitations from these occupied orbitals, 
followed by a deexcitation back into the same orbital. The extra minus sign 
associated with the core orbital is accounted for by an opposite sign in the 
energy denominator. Similarly, the energy denominator in the second term in Eq. 
(20) is not the one immediately expected from perturbation theory, but, as 
discussed in more detail in Ref. [74], it arises from a summation of terms where 
the next interaction occurs both before and after the second occurrence of the 
electron-electron interaction V~2. 

The effect of the potential S in Eq. (20) acting on an open shell orbital o can 
be constructed in different ways. Lindgren et al. [73] in their non-relativistic 
work, used numerical solution of two-particle equations. However, as discussed 
in Sect. 2.3, due to the existence of negative energy solutions to the Dirac 
equation, the relativistic generalization is far from straight-forward and all 
relativistic applications for large atoms have instead made use of a more or less 
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complete basis set, keeping only the positive energy states in the summation in 
Eq. (20). Kelly [75] in his pioneering non-relativistic atomic perturbation theory 
calculations, performed the summation over intermediate states using a basis set 
consisting of both discrete and continuum orbitals. Dzuba et al. 
[13, 20, 28, 76, 77] and also Das and coworkers [12, 78] use a similar basis set in 
their relativistic calculations. The accuracy of an analytical basis set in the 
relativistic framework has been demonstrated by Quiney et al. [52]. Johnson and 
coworkers [53] have used B splines to construct an accurate and economical 
basis set, which has been applied in extensive calculations, including the study of 
the weak-interaction induced electric dipole transition in Cs [32]. The PNC 
calculations by Hartley et al. [14] were performed by using a discrete numerical 
basis set obtained by diagonalizing a finite-difference representation of the 
one-electron Hamiltonian, as described by Salomonson and Oster [54]. The 
different approaches give results in good agreement - provided, of course, that 
sufficiently large basis sets are used. 

The approximate Brueckner orbital, I o + 3 o ) ,  constructed in this way can be 
used in combination with the PNC perturbed orbitals discussed in Sect. 2.7 to 
evaluate the lowest order correlation diagram shown in Fig. 6a (together with 
exchange versions, as well as Hermitian conjugate terms). Also, the potential 
correction v + can be added to account for the shielding of the external field 
perturbation, thereby including also diagrams such as Fig. 6d. Using electric 
dipole and PNC perturbed valence orbital, 1o +PNC), it is possible to evaluate the 
diagrams represented by Fig. 6b. Alternatively, they may be evaluated together 
with corresponding diagrams in Fig. 6c by defining a parity mixed Brueckner 
orbital correction which satisfies the equation 

(~o - ho)[6o eNc> = (h eNc + v eNC)l 6o > + S(~ o)1 o eNc> + S ~C(eo)l o > -- 3e o I o ~,~c> 

(22) 

and can be obtained either by solving this equation or by direct summation using 
a PNC mixed basis set. ~In the first two terms, as well as in the last term, on the 
right-hand side of (22), the correlation potential S is unaffected by the admixtures 

f .  

i 

~ f e 

i i i 

Fig. 6a-f. Examples of correlation corrections to the diagram shown in Fig. 1. The encircled cross 
represents h EDM together with the modification, v EDM, induced in the potential. Hermitian conjugate 
and exchange diagrams have not been shown. Diagram (d) is a shielding correction to diagram (a), 
similar corrections are applied to the other diagrams. Following the nomenclature by Dzuba et al. 
[13] the diagrams (a-d) are classified as "external substitutions". Diagram (e) is an "internal 
substitution" and (f) is a "structural radiation" term 
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and, following Dzuba et al. [13], these orbital corrections are referred to as 
"external" substitutions. 

The PNC mixing may also occur in the orbitals defining the correlation 
potential 2; leading to a parity non-conserving part of the correlation potential 
ZPNC(ev). The parity-mixed correlation potential SPNc(~) is considerably more 
complicated and time-consuming to evaluate than the original correlation poten- 
tial given in Eq. (20). Each of the terms on the right-hand side of Eq. (20) gives 
rise to six terms, corresponding to substitutions, both as a bra and a ket vector, 
of each of the three orbitals involved. Using the parity mixed correlation 
potential, the "internal" Brueckner orbital correction can be calculated as: 

[~Oint ) ~--- ~s (Eo --'~s) 

and an example of such a contribution is shown in Fig. 6e. These "internal 
substitutions" (such as Fig. 6e) have been found to give very small contributions 
in the closely related case of the PNC transition in Cs [ 13, 27] but are significant 
for T1 [ 13]. 

Terms where the external field perturbation appears on an internal line in the 
correlation potential, giving rise to "structural radiation" corrections such as 
Fig. 6f, were found by Dzuba et al. [13] to be small and they ascribe the 
smallness of internal substitutions (Fig. 6e-f) to the double occurrence of a large 
energy denominator related to the excitation of a core orbital. 

3.1.1. Higher-order correlation effects. From the study of parity conserving 
properties it is obvious that higher-order correlation effects are also necessary to 
obtain reliable results. A first, relatively straight-forward way to include some of 
the higher-order effects is to treat the correlation potential on the valence 
electron self-consistently, solving the equation: 

(ev + 6co - ho)f6v > = S(eo)[ v + 6v > - 6~ v I v >. (23) 

This equation was solved in the early many-body calculation by Dzuba et al. 
[20]. Solving Eq. (23) is also one of the methods used in the recent accurate 
calculation by Blundell et al. [32] who found that this "chaining" of the 
correlation potentials significantly reduced the total correlation effects, giving 
results in agreement with the more complete alternative approach, discussed in 
Sect. 3.3. 

The iteration of the correlation potential indicated in Eq. (23) corresponds to 
inclusion of certain terms in even orders of perturbation theory, but neglects, e.g. 
the third order diagrams shown in Fig. 7. Of these, Fig. 7b-c  are among those 
responsible for the screening of the electron-electron interaction, emphasized by 
Dzuba et al. [28, 76-77] who pointed out that a lowest-order calculation of 
correlation effects in general gives an overestimate since this screening of the 
electron-electron interaction by the other electrons is not taken into account. 
Dzuba et al. summed these diagrams (together with analogous higher order 
terms) by using Feynman propagators. The relation between this approach and 
MBPT is analysed in Ref. 79. Another method to include higher-order correla- 
tion effects would be to solve the pair equation iteratively [80-83]. Direct 
application of many-body perturbation theory in its conventional intermediate 
normalization formulation [64] would lead to inclusion of the diagrams in Fig. 
7(a-b), whereas Fig. 7(c-e) would be omitted. They could be included in a 
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Ii 
Fig. 7a-e. Examples of third-order correlation diagrams (a-h) would be included in an iterative 
solution of the pair equation. In a Hermitian formulation also (e-e) would be included. Diagrams 
(b-e) account for the screening of the Coulomb interaction. Diagram (e) could be included by 
including Brueckner-type correction in the occupied orbitals, if care is taken to avoid double-counting 

Hermitian formulation of  MBPT, as suggested, e.g. by Lindgren [84]. Recently, 
Blundell et al. [79] have investigated all individual third-order contributions to 
the binding energy Cs and T1. They found that the screening diagrams 
(analogous to Fig. 7b-c)  do, indeed, dominate for Cs, although contributions at 
the percent level arise also from other diagrams. For  T1, the importance of  the 
remaining diagram is significantly larger• 

In Sect. 3.2 we discuss the application of  all-order methods within the 
coupled-cluster approach which has been the theme of this workshop. 

3.2. The coupled-cluster approach 

The coupled-cluster approach was introduced in nuclear physics by Coester and 
Ktimmel [85-86] and in quantum chemistry by Cizek [87] and delightful 
presentations of its early developments were given at this workshop [88]. This 
approach provides a systematic way to include large classes of  higher-order 
terms. A wave operator O = {exp(S)} in normal ordered exponential form is 
then used to express the exact wavefunction 7 ~ terms of ku0, which is an 
eigenfunction to the approximate Hamiltonian Ho: 

] ~ )  = O [ 7~0) = {exp(S) }] 710). 

The cluster operator S = S~ + $2 + $3 + • • • is the connected one-, two-, three-, 
• . .  body part of the wave operator and can be obtained from the equation: 

[S, Ho] = (V~ - QVefr) . . . .  • (24) 

The effective potential Veer in Eq. (24) is added to the approximate Hamiltonian 
H0 to give the effective Hamiltonian H~fr which has the property that it 
reproduces the exact eigenvalues when acting on the approximate wavefunctions. 
Commonly the equation for the cluster operator is derived using intermediate 
normalization [see e.g. Ref. 64] where V~fr = PVQP. In the case where the model 
space defined by P includes only one state, V~fr gives the energy correction for 
this state. 

The exponential Ansatz for the wave operator leads to a large number of 
terms on the right-hand side of Eq. (24), limited however, by the two-body 
character of  V which makes it possible to connect at most four cluster operators 
in VQ. The treatment of a / /powers  of the one-body cluster operator $1 can be 
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trivially implemented by replacing all ket vectors ]c) for occupied orbitals by the 
modified orbital ]c + 6 c ) ,  while leaving the bra vector unchanged I as <c I. This 
approach was used e.g. in the program for complete atomic CCSD (coupled- 
cluster with singles and doubles) calculations developed by Salomonson and 
0ster [54], so far applied to Be [81, 89], Li [90], Na [91] and K [92]. 

Terms involving higher than the second powers of $2 cannot lead to 
two-particle contributions on the right-hand side of Eq. (24), but also the 
inclusion of $22, becomes complicated. Whereas some of the terms "factorize 
with respect to pair energies" and can be easily implemented essentially as energy 
corrections, some are quite demanding computationally. An encouraging lesson 
we learnt at this workshop is that the "approximate coupled pair" (ACP) 
approach which includes only these "hole-pair factorizable" diagrams in fact 
"provides results which are usually better than the full CCD approach" [93]. 
Paldus et al. [94] explained this observation by noting that a certain amount of 
cancellation exists between the contributions from true quadruple excitation 
clusters S 4 and the remaining S~ terms. 

The higher-order correlation calculations for heavy atoms is hampered by the 
magnitude of computational demands. In a relativistic central-field model, Cs 
has 17 core orbitals. Including all combinations of two-electron orbitals leads 
-literally- to thousands of pair excitations already when modest angular 
excitations are allowed. In the most complete coupled-cluster calculation per- 
formed for Cs [32, 82] Blundell et al. performed iterations for all these excita- 
tions, within a fully relativistic framework. Of the non-linear terms only the 
"backward diagrams" which account for the energy correction of the valence 
electron were included and in their first coupled-cluster calculation, which was 
performed for Li and Be + [81], they solved in effect the equation 

[S, n0] = (V(1 + S )  - S P V S )  . . . .  

for single and double excitations 
Whether or not the non-linear terms are included, the restriction to single 

and double excitations in S leads to neglect of the terms, such as those shown in 
Fig. 7c-e, where an intermediate level involves a triple excitation. Due to 
factorization, these terms, in fact, require only two-particle clusters and could be 
included ad hoc by observing that they are proper allowed terms in the 
conventional expansion. A more formal way of including these additional terms 
is provided by the Hermitian or unitary coupled-cluster approach [84, 95-96]. 
Lindgren used the normalization condition of Jorgensen [97] Pf2*f2P = P to 
derive a generalized equation for the cluster operator S: 

[S,  O0 ]  ~-- ( V ~  - ~"~ Veff -'~- X~-(VO - -  ~'~ Veff)+ ) . . . .  

where the subscript " + "  denotes effects beyond the approximation used. E.g. if 
singles and doubles are included, only the terms in (Vf2-  OVe~)+ leading to 
triple or higher excitations are kept. Alternatively, variational principles might be 
used to derive unitary coupled-cluster equations. This approach was used e.g. by 
Kutzelnigg [95], Pal [98] and by Bartlett and collaborators [96]. 

This asymmetry is a consequence of the choice of intermediate normalization. Replacing <c[ by 
(c + 6c] would lead to inclusion e.g. of the diagram in Fig. 7e already in the evaluation of the 
potential from the core 
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In their most recent calculations on Cs [32, 83] Blundell et al. have added the 
"Hermitian conjugate" terms leading to the equation: 

[S,, H0] = (V(1 + S) - S P V S  + St2(VS2)3) . . . . .  1 

for single excitations, while the two-particle equation is unchanged except for the 
changes induced by the modified S,. 

Liu and Kelly [99] are currently implementing a computer program which 
includes the VS~ terms as well as the Hermitian conjugate terms in the S, 
equation, thus solving the equation: 

, 2 S~(VS2)+ S PVS )  . . . .  • (25) [S, Ho] =(V(1  + S ÷ ~ $ 2 )  ÷ 

The restriction to double excitation clusters $2 in some of  the terms in this 
equation follows from a restriction to terms which enter in third order of  the 
Coulomb interaction or lower. 

3.3. Coupled-cluster equations and additional perturbations 

A natural extension of the coupled-cluster approach in the presence of an 
additional perturbation is to obtain cluster operators which include the perturba- 
tion. This extension was suggested by Monkhorst  [100] as a method to derive 
algebraic equations for "first-order properties", with the possibility to compute 
also second- and higher-order properties. One way is to obtain, e.g., parity 
mixed-cluster operators, S PNc would be to let all orbitals be parity mixed (i.e. 
solutions to Eqs. (12-13)  and keeping terms with one occurrence of a PNC 
interaction. Alternatively a closely related double perturbation approach may be 
used, as in the early work of Kelly [101], where one electron-electron interaction 
is replaced by the additional perturbation. The relation between the perturbed 
coupled-cluster expansions based on these two approaches has been discussed 
e.g. by Bartlett [102]. 

Liu and Kelly [99] are using a double-perturbation approach. As the PNC 
operator leads to single excitations already in lowest order, S~ yc  terms must be 
kept in some cases where the unperturbed cluster Eqs. (25) were restricted to 
two-particle clusters. Again, keeping terms up to third order in the Coulomb in 
Coulomb interaction gives 

[S PNc, Ho] = HPNC( 1 4- S 4- S, $2) 

- -  ~ PNC - ~ ( V (  S P N C  -[- S P N C S )  SPNCpVS ~- (sPNC)~(VS2)3 ~- 82(V32 )3)  . . . .  • 

These PNC mixed cluster operators can then be used to evaluate the matrix 
elements of  the dipole operator. 

An alternative path, followed by Blundell et al. [32] is to use the unperturbed 
cluster operators for the initial and final states, as well as for the most important 
intermediate states, to evaluate matrix elements both of  the PNC weak interac- 
tion and of the dipole operator. These calculations will be discussed in more 
detail below. 

3.3.1. Matrix elements in the coupled-cluster approach. Matrix elements of  an 
additional perturbation can be treated in a number of ways. Formally, the most 
natural extension of  the unperturbed coupled-cluster approach is to introduce 
perturbed coupled-cluster operators, as discussed above. In the case of a 
(pseudo-)scalar operator, such as the PNC weak interaction, this is feasible. For 
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a vector property, such as the external electric field, this leads to an order-of- 
magnitude increase in the number of angular momentum structures of a pair 
excitation and due to the size of the problem, this approach does not appear to 
be very attractive. In addition, unless the coupled-cluster formalism used is 
unitary, this leads to a different treatment of initial and final states, which is, at 
least, an aesthetical disadvantage. 

A direct evaluation of the matrix element between coupled-cluster wavefunc- 
tions, as suggested e.g. in early work by (2i~ek [87] and by Fink [103], is 
automatically symmetric in initial and final state. On the other hand, this 
approach has the disadvantage that the series of diagrams never terminates, 
although certain types can be summed by a simple matrix inversion and others 
by iterative schemes [90]. Still, if the coupled-cluster wavefunctions are obtained 
in a non-Hermitian framework, some simple diagrams are left out already in 
third order of the electron-electron interaction- unless triple excitations are 
allowed. In view of the size of the problem it is desirable to avoid triple 
excitations whenever possible and to include as many terms as possible within 
the CCSD approach. As a final consideration we mention the fact that the initial 
and final states of the transition often have the same angular symmetry and 
should preferably be treated within the same model space. The formalism must 
thus be able to handle a multiconfigurational, non-degenerate model space. It is 
possible that a bivariational approach, such as the "Extended coupled- 
cluster method" (ECCM) suggested by Arponen et al. [104] may have the 
desired features, but the details involved in an atomic physics implementation 
have not yet been considered. 

Blundell et al. [32, 82-83] restrict the wave operator to linear terms, 
7 j = (1 + S)7% leading to an automatic truncation in the expansion of the matrix 
elements. In addition, the resulting expression for the matrix element was 
extended to incorporate the RPA terms exactly. This formalism was found to 
reproduce the experimental s and Pl/2 state hyperfine constants with about 1% 
accuracy. (The experimental valence removal energies were reproduced to about 
0.5% or better (about 5% of the total correlation effect) by the solution of Eq. 
(24).) The technique was then used to evaluate the individual matrix elements 
~XIHPNClI), ~FIHPNClX), ~XIDII) and ~F]DIX) for the first four excited 
P1/2 states in Jf in Eq. (5). The effect of the remaining P1/2 states were estimated 
using the simpler methods presented in Sects. 2.7 and 3.1. 

3.4. The need for triple excitations 

The Hermitian form of the coupled-cluster expansion leads to inclusion of some 
terms (e.g. Fig. 7c-e) which are classified as triple excitations in the more 
conventional approaches based on an intermediate normalization. However, the 
high demands for accuracy in the PNC calculations will probably necessitate the 
inclusion also of genuine triple excitations, examples of which are shown in Fig. 
8. Salomonson and Ynnerman [91] investigated selected triples diagram con- 
tributing to the binding energy and hyperfine structure for Na and found a 
significant improvement in the agreement with experiment. Complete single, 
double and triple excitation coupled-cluster procedures (CCSDT) have been 
implemented by Bartlett and coworkers [104] and by Scuseria and Schaefer [106] 
and applied to small atomic and molecular systems, using relatively small 
analytical basis sets. In addition, several methods which include triples in 
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Fig. 8a-d. Examples of triple excitation contributions to a Brueckner orbital 
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approximate ways have been proposed and tested [105]. Comparisons between 
the various methods [107, 108] show that the triples contributions from a 
CCSDT calculation are generally well reproduced by using CCSD amplitudes to 
evaluate the triples contributions only to lowest order. This observation is 
encouraging and may make it possible to perform similar calculations for Cs. 

3.5. Refined semi-empirical calculations 

During the last few years a number of refined semi-empirical methods have been 
devised, making it possible to combine the stringency of MBPT with the benefits 
of using accurate experimental data if available. 

3.5.1. Direct use of  experimental energies and matrix elements. In 1986 Bouchiat 
and Piketty [26] pointed out that for the 6s ~ 7s transition in Cs, the summation 
in Eq. (5) is strongly dominated by the lowest intermediate p states: 6p, 7p and 
8p contribute about 95%. If accurate experimental data are available for the 
energies and relevant matrix elements involving the first few intermediate states, 
these data can then be used to obtain high accuracy in the dominating part of the 
result. Two possible problems may be identified: First, the remaining parts of the 
calculation must be performed in a way consistent with the use of empirical 
matrix elements. This problem, discussed in more detail below, has been ad- 
dressed particularly in two recent papers by Hartley and Sandars [29-30]. 
Second, while the energies and electric dipole transition matrix elements can be 
deduced directly from experiment, this is not the case for the matrix element of 
the PNC interaction. However, in the central-field model (CFM) the PNC matrix 
elements can be obtained from the geometrical mean of the hyperfine structure 
for the s and P~/2 states involved, and Bouchiat and Piketty [26] argue that the 
ratio between these two properties should be less sensitive to calculational errors 
than either separately. We note first that the CFM ratio is unchanged by the 
inclusion of the "external" correlation effects, such as those shown in Fig. 6a-c 
but also higher order contributions of similar type, since their effect, both on the 
hyperfine interaction and on the PNC matrix elements is described by the change 
in wavefunction normalization close to the nucleus. The "core polarization" 
effects (Fig. 2), on the other hand, will affect the two properties differently, one 
being a pseudoscalar, the other a vector. Bouchiat and Piketty [26] calculated the 
lowest order core-polarization contributions for the two properties, which was 
found to give about 4-5% correction to the ratio (which can be compared to 
nearly 20% correction for the PNC matrix element, itself [22]). At this stage, the 
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calculations omit second- and higher-order core-polarization corrections to the 
ratio, as well as the combined effect of electric dipole shielding and PNC core 
polarization (e.g. Fig. 4d-e). Internal substitution, such as Fig. 6, are also 
omitted, but as discussed earlier, these effects are very small for Cs. Their final 
result quoted is - 0.935(1 + 0.02(exp) + 0.03(theory)) × 10-11i]e l ao Qw/(  - N). 

3.5.2. Correlation potentials. Experimental data can also be used to parameterize 
a semi-empirical correlation potential to be added to the DHF potential. This 
approach has been pursued by two groups. Parpia et al. [31] used the experimen- 
tal polarizability and varied the "cut-off" parameter in the correlation potential. 
They calculated the shielding effects only approximately, by using a semi-empir- 
ically modified dipole operator. As they calculated no other physical quantities, 
the accuracy 6f their final result is difficult to assess. Hartley and Sandars [29] 
chose instead to vary two parameters, namely the overall size of the potential 
and the "cut-off" parameter, to optimize the energy eigenvalues for the lowest s 
and p states. Since the additional semi-empirical potential term is intended to 
account partly for the "external" correlation effects which were not calculated 
explicitly, it is not removed in the perturbation expansion. This makes possible 
a consistent treatment of all core polarization effects to higher orders, using the 
standard RPA equations (12-17), while including the dominating correlation 
effects via the semi-empirical potential. 

Parameters in the correction potential chosen to fit the energies were found 
to lead also to excellent E1 transition matrix elements, which could be explained 
by the observation that, the fittting of the eigenvalues leads to an accurate 
reproduction of the form of the wavefunction for larger r values, which are 
important for the electric dipole matrix element [29]. On the other hand, the 
hyperfine values for the s states were overestimated in this approach whereas for 
the Pl/2 states they were underestimated, with errors in the range 4-8% of the 
experimental values. The PNC matrix elements, however, which involve a 
product of the s and P m  wavefunction, are much more stable and Hartley and 
Sandars found a spread of about 1% in their final PNC-E1 matrix elements. 

3.5.3. The Semi-Empirical Ratio method. After an analysis of the semi-empirical 
approach in MBPT terms Hartley and Sandars [30] devised a method to improve 
calculated PNC-E1 matrix element through careful comparison of calculated 
results for known quantities with experimental data. They first consider the 
application of perturbation theory to the ratio between the geometrical mean of 
the s and P,n hyperfine structures and of the PNC matrix element. When these 
matrix elements are evaluated between physical states, the PNC potetnial correc- 
tion in Fig. 2 and Eqs. (12-13) will involve the energy difference between the 
two participating states, analogous to the treatment of the time-dependent 
perturbation in Eqs. (14-15). This difference in the PNC potential corrections 
arises because the energy denominators involved are always evaluated towards 
the PNC interaction, from above in Fig. 2(c) and from below in Fig. 2(b). (In 
practice, the presence of 09 of the denominators was found to affect the results 
only in the fourth digit for Cs.) It is then important that the calculation of the 
residual terms is made in a way consistent with this treatment - which is not the 
standard computational form. Hartley and Sandars [30] found that it was 
possible to account for this inconsistency by adding and subtracting the contri- 
butions from the low-lying states, as calculated in the more standard formulation 
and obtain a correction term which is the difference between empirical and 
calculated contributions from the low-lying states. This correction, which is to be 
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added to the total calculated result, is expressed as a correction factor multiply- 
ing the calculated value for each of the low-lying intermediate states. This type 
of correction can, of course, be applied for any choice of computational method 
used and the accuracy of the final result will depend both on the accuracy of the 
calculation for the higher intermediate states and on the accuracy of the 
experimental quantities used to obtain the correction factors for the lower ones. 
The error in E~ 'No due to experimental uncertainties was found to be about 1.5%. 
The uncertainty entering through the remaining terms is reduced by the small- 
ness of the results for these correction terms found in other works• Accounting 
for these terms, as well as for the computational uncertainty, Hartley and 
Sandars obtain a final result - 0.904( 1 _+ 0.02) x 10-11 (i I e I a0 Q w / - N). 

4. Results and discussion 

Already in Sect. 2 we presented some of the first semi-empirical estimates• The 
last decade has seen a rapid development of techniques and computers, making 
possible extensive many-body calculations. Results obtained at various levels of 
approximation are shown in Table 1. It is hoped that this Table should make it 
easier for possible newcomers in the field to find relevant numbers for compari- 
SOIL 

The number quoted for the PNC electric dipole transition matrix element is 
traditionally (7sVM(m = 1/2) IDI6sPM(m = 1/2)) where the superscript PM de- 
notes parity-mixed states. Further, the experimental results assume that the 
dipole operator is defined as D = ~ i ]e  I ri and here we follow this convention. 
(The sign choice in D determines the sign of E PNc, but leaves the vector Stark 
polarizability fl unchanged, thereby determining the sign of the ratio EPNC/fl.) 

4.1. Results of  many -body calculations 

The first many-body calculation for Cs was published by Dzuba et al. [20]. The 
starting point for the calculation was the Dirac-Har t ree-Fock potential 
from the closed-shell core of Cs +. Correlation effects were taken into account 
by defining a correlation potential Z(e) with the energy 5, which enters 
the denominator in (20), chosen to be ~6s for all ns states, e6pl.2 for all npl/2 states, 

• / . 

etc. This potential was treated to all orders for all intermediate states with 
one electron outside closed shells, and was found to give energies for 6-8s 
and 6-8p within 1% of the experimental values• For intermediate states involving 
core excitations, the correlation potential was neglected. Potential cor- 
rections from h vNc were treated self-consistently, whereas the shielding of 
the electric field was included to lowest order only. Neglecting correlation effects 
gave the value - 0 . 8 8 0 x  lO-11i]elao(Qw/-N), which was changed to 
-0.856 x 10-11i ]e lao(Qw/-N)  by the inclusion of the correction potential. The 
velocity form of the dipole operator was found to be much more unstable. Since 
the shielding of the electric field was not treated self-consistently, the final result 
may differ between the length and velocity form, and the difference may be used 
as an indication of the accuracy of the calculation. The discrepancy was found 
to be significantly reduced by inclusion of the correlation potential: In the DHF 
basis, the velocity form gave a result 20% lower than that obtained for the 
length form, whereas in the correlated basis, it was only 0.2% lower. Using 
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Table 1. Contributions to the 6s ~ 7s parity non-conserving electric dipole transition element in Cs 
due to the spin-independent weak interaction (Eq. (1)) in units of - 1 0  -j l  × ile]aoQw/(-N) 

0:th order + V  PNC +/3-+ + V  +PNC 

(Fig. 1) (Fig. 2) (Fig. 3) (Fig. 4) 

Local 1.33 a 
1.15 b 

1 .00  ~ 

1.050 0.97 d 

Dirac-  0.740 ~ 0.920 ~ 0.880 ~ 
Fock 0.736 r 0.924 f 0.888 r 0.886 r 

0.92 g 
0.912 h 0.890 i 

0.742J 0.922 j 0.887J 
0.866 k 

0.9271 0.8911 
0.890 m 

MCDF 0.85 n 

Brueckner Other Final 
orbitals corrections result 

2:nd order 0.9043 0.003i.°.P 

-0.003i.q 
0.948 °,r 
0.947 kx 

0.983 s 0.946 s,r 
0.929 k,t 
0.933 ~,t 

semi-emp. 0.935 u 
0.879 v 

0.9381 0.889 l 
( +rat io  corO 0.904 x 
iterated S 0.734 e 0.907 e 0.856 ~ 

0.908 k 
0.904(6) TM -0.001(5) ~'y 

screened 
Coul. int. 
"all-order" 0.911(6) m -0.002 m'~ 

0.904(1±0.02) x 

0.903(9) m 

0.91(1 ± 0.01) k 
0.909(9) m 

a Bouchiat and Bouchiat, Refs. [5, 58]; b Loving and Sandars, Ref. [59]; c Neuffer and Commins, Ref. 
[65]; d C. Bouchiat et al., Ref. [44] (The smaller number includes semi-empirical shielding effects but 
no v PNc corrections); e Dzuba et al., Ref. [20]; r Mgtrtensson-Pendrill, Ref. [22]; g Sch~ifer et al., Ref. 
[25]; h Johnson et al., Ref. [23]; i Johnson et al., Ref. [24]; J Dzuba et al., Ref. [13]; k Dzuba et al., 
Ref. [28]; I Hartley, Sandars et al., Ref. [29]; m Blundell et al., Ref. [32]. The "all order" result 
includes by construction the internal PNC correlations as well as the "structural radiation" and 
normalization terms; n Plummer and Grant, Ref. [21] (The number quoted in the original work was 
a factor x/(2/3) smaller due to different conventions used); o Johnson et al., Ref. [27]; v Corrections 
from xPNC; q Structural radiation and normalization corrections; r Shielding corrections evaluated 
with DHF orbitals; S Hartley et al., Ref. [14]; t Shielding corrections evaluated with Brueckner 
orbitals; u Bouchiat and Piketty, Ref. [26]; v Parpia et al., Ref. [31]; x Hartley and Sandars, Ref. [30]; 
Y Internal substitutions, structural radiation, normalization and Breit corrections, to be added to the 
"iterated S "  result; z Breit interaction 
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experimental energies, hyperfine splittings and electric dipole transition matrix 
elements, Dzuba et al. [20] found that their calculated value for the quantity 
(ATsA6 ,,2)'/2<6p,/2 l al 6s)(ET~ -E6p 19-1, which is similar to the PNC-E1 matrix 
element, was 3.5% too low for the length form (and 0% for the velocity form). 
Based on this comparison, they quote a final result - ( 0 .88_0 .03 )  x 
lO-~lilelao(Qw/-N) which is 3% higher than their calculated value, but with a 
3% uncertainty assigned to it. 

A self-consistent treatment of the shielding of the external electric field, as 
well as the potential corrections due to h PNc (Eqs. 12-17), first developed for 
calculations on Bi [9] was applied to Cs by M~rtensson-Pendrill [22] giving an 
automatic identity between the length and velocity form for the dipole operator. 
The self-consistent treatment of the electric field gives very small contributions 
for Cs, and the final result is close to the value obtained by Dzuba et al. [20]. The 
self-consistent treatment of all one-particle effects is now a standard procedure 
[13, 17, 24, 29]. The small difference seen in Table 1 between the results using this 
procedure is of the level of sensitivity to the nuclear distribution ON(r) in h PNc 
found by Johnson et al. [23]. As discussed in Sect. 3.5.2 Hartley and Sandars 
have complemented the self-consistent treatment of one-particle effects by adding 
a correlation potential, thereby obtaining overall better agreement with experi- 
mental quantities, where available. 

Also the calculations of lowest-order correlation effects has now been per- 
formed by several groups [13-14, 27-28]. The disagreement between the first 
two published results at this level [13, 17] has since been resolved and understood 
in terms of an insufficiently large basis set used in Ref. [ 13]. The present results 
now give a mutual confirmation of the numerical reliability of the second-order 
Brueckner orbital value - 0.93 x 10-11 i ] e [ a0 ( Q w / - N) (with all screening effects 
evaluated with Brueckner orbitals). 

However, as discussed in Sect. 3.1.1, higher-order correlation effects are 
necessary for the results to be also physically accurate. Adding a semi-empirical 
correlation potential [29] accounts to some extent also for higher-order correla- 
tion effects, in such a way as to reproduce experimental energies, and gives 
-0.889 x 10-11i[e [ao(Qw/-N ). The semi-empirical ratio corrections [30], dis- 
cussed in Sect. 3.5.3, changes this value to -0 .904 x 10-11ile [ao(Qw/-N). 

Iteration of the correlation potential using Eq. (23) has been found to 
reduce the result significantly, and Blundell et al. [32] obtain the result 
-0.904(6)lO-~li[e[ao(Qw/-N) with an additional correction +0.001(5)x 
lO-~li[e[ao(Qw/-N) due to internal substitutions, structural radiation and 
normalization corrections, as well as the modification caused by the Breit 
interaction. (The error in the correction is due mainly to the estimate of the 
structural radiation terms.) 

By coincidence, a similar value results when the screening of the electron- 
electron interaction is included, as discussed by Dzuba et al. [28, 76-77]. 
Blundell et al. [32] investigate the influence of this effect by multiplying the 
correlation potential 22 by a screening factor 2, where 2 = 0.8 for s states and 
2 =0.84 for P~/2 states were chosen to fit experimental energy levels. This 
changed the prediction for E1PNc by only a few tenths of a percent. 

The most complete calculation to date [32] includes pair correlation effects to 
all orders for the matrix element involving the first four excited P1/2 states, with 
effects of the remaining P1/2 states, both those involving excitations of the 
valence electrons and those involving also excitations of core electrons, estimated 
using the simpler methods presented in Sects. 2.6 and 3.1. These residual 
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contributions were found to contribute only about 2% of the total E~ Nc. To gain 
some idea of the accuracy of this calculation, Blundell et al. [32] made various 
tests: 

(a) the coefficients for valence single excitations were rescaled to reproduce the 
experimental valence removal energy, 

(b) a similar modification was made to fit instead the hyperfine constants and 

(c) the effect of using the dipole operator in both its length and velocity form 
was considered 

(d) experimentally available energies and oscillator strengths were used where 
available. 

The resultant scatter in the values of E l  PNC w a s  used to estimate a theoretical 
error of 1%. The vector Stark polarizability for 6s ~ 7 s  transition was also 
calculated using an analogous technique (see Sect. 4.2, below). 
The result -0.909(9) × lO-l~i]elao(Qw/-N) from this calculation is in good 
agreement with that obtained by the significantly different approach described in 
Sects. 2.6 and 3.1, (including the "chaining" of the correlation potential Z, 
discussed in Sect. 3.1.1) and Blundell et al. [32] quote the final result as the 
average of the two approaches, giving: 

-0.906(9) x lO-'~i[elao(Ow/-N).  (26) 

The result agrees with the final result given by Dzuba et al. [28] who also claim 
an accuracy of about 1%. 

4.2. The vector Stark polarizability 

The experiments studying PNC in atomic Cs measure the ratio of the matrix 
elements E~Nc/B, where fl is the vector Stark polarizability for the 6s--, 7s 
transition given by [5, 58]: 

( 1 ~ t ~ 7 ~ n p  E6s--EnpI/2 1 ) fl = ~ Z, (7s [ID [[nP,/2 )(nP,/21[D H 6s ) ,.z s - - ~  /2 

+½<7sllOllne3/2)<ne3/2]lDl[gs) ETs-Enp3/z E6s-Enp3/2. (27) 

Owing to the availability of experimentally derived values for the n = 6, 7 dipole 
matrix elements and the rapid convergence of the sum over n, semi-empirical 
estimates of fl have been very successful. Typically, the oscillator strengths 
f (6s  ~ 6p) and f (6s  ~ 7p) are taken from a direct measurement, while those for 
7s ~ 6p and 7s ~ 7p are inferred from the 7s lifetime and the 7s polarizability. In 
one approach, a related quantity ~, the scalar transition polarizability, is first 
calculated and fl is then obtained from a measurement of c~/fl. The calculation of 

involves experimental dipole matrix elements and energies for n = 6, 7 (in a 
formula analogous to (27), above), and a theoretical determination of the 
contribution from n = 8 onwards (see e.g. Ref. [109] and further references 
therein). Recent determinations along these lines give fl = 27.2(4)ao 3 [26] and 
fl = 27.3(4)a03 [109]. Recently, Bouchiat and Guena [110] have proposed infer- 
ring fl from a measurement of Mhlfslfl, where M~ i* is the component of the 
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6s ~ 7s magnetic dipole amplitude induced via the hyperfine interaction with the 
nucleus. Using a theoretical value for M~ s" they obtain /~ = 27.17(35)a03. Thus 
semiempirical approaches to /~ already attain the 1.5% level of accuracy. Re- 
cently Blundell et al. [32] have published an ab initio calculation using a method 
analogous to that for E~ Nc described in Sect. 3.3, obtaining/3 = 27.00(20)a03. It 
seems that future progress could result from a combination of improved mea- 
surements and more refined calculations. 

4.3. Comparison with experiment 

We are now in a position to extract information from a high-accuracy measure- 
ment of caesium PNC. The most accurate experiment [18] reports 

1.513(50) mV/cm(F = 3 ~ F '  = 4) 
Im(EpNc)//~ 

5 

(28) 
- 1.639(48) mV/cm(F = 4 ~ r  = 3)' 

After estimates of  the contributions from the nuclear-spin dependent PNC effects 
(Eqs. (2)-(3)) ,  discussed in more detail in Refs. [32, 42-43], a value for the 
spin-independent part of E~ Nc can be extracted, giving Im(E~NC)/fl= 
-- 1.572(35) mV/cm. Using the value fl = 27.00(20)a03 obtained by Blundell et al. 
[32] and converting the experimental result to atomic units gives 

E~NC(exp) = -- 0.8252( 184)[ 61 ] 10- ' ~ ieao (29) 

where the first error is due to experiment and the second, in square brackets, is 
the theoretical error from the calculation o f /L  Combining this value with the 
calculated value in (26), we can finally determine Q w as 

Ow = - 71.04( 1.58)[0.88] (30) 

where two theoretical errors have been taken in quadrature. 

4.4. Particle physics implications 

One of the prime motivations for introduction of the unified theories of  weak 
and electromagnetic interactions was the need for a finite theory. Although the 
original four-fermion interaction provided a satisfactory tree-level account of 
weak interaction physics, uncontrollable ultraviolet infinities resulted when ra- 
diative corrections were considered. While these could be made somewhat less 
severe by introducing intermediate charged vector bosons, W, they were com- 
pletely controlled only when the Z boson and the photon were introduced in 
SU(2) x U(1) gauge group with their masses generated by the Higgs mechanism 
[37]. Once this renormalizable theory was introduced, one loop corrections to 
weak processes could be unambiguously calculated. Since the coupling constants 
g and g'  of  the standard model are proportional to the electric charge e, radiative 
corrections are proportional to the fine structure constant ~, and thus can be 
expected to enter at the 1% level. In fact, the large mass scale set by the W and 
Z masses leads to logarithms with large arguments that make these corrections 
enter at the several percent level. Because, as argued in this paper, the precision 
of atomic calculations in caesium is at the 1% level, once experiment reaches this 
level, information about the radiative corrections can be obtained. This is of 
particular interest since these corrections provide an indirect probe of  physics at 
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a very high energy scale, that normally is probed only with extremely large scale 
accelerators. The point is that while heavy, undiscovered particles can be directly 
discovered at such machines, because they enter as virtual particles in radiative 
corrections, their effect can actually be seen if high-precision low-energy experi- 
ments such as atomic parity non-conservation are carried out. A particularly 
important example of this involves the so-far undiscovered top quark t. From 
considerations involving the mass of the W, the mass of this particle is known to 
be around 140 GeV, with an uncertainty of +40 GeV. Any variation from the 
central value can be parameterized in terms of  a quantity ~ multiplying Qw 

Qnew =- 1 + ~(mz)  T 

where 

3 {m~ - (140 GeV)2~ 
T = 16~Xo \ m~v ] 

with ~(mz) ~ 1/128 and x0 = 0.2323 is the value of the square of  the sine of  the 
Weinberg angle inferred from the Z mass when mt = 140 GeV. Note that the fine 
structure constant, a, is normally 1/137, but radiative corrections change it to the 
value a(mz)  at the Z mass scale. Using m w = 80 GeV, one can see that the 
corrections to ~ can be as large as 2% for mt = 200 GeV. A recent development 
in the field has been a parameterization of new physics entering radiative 
corrections by Peskin and Takeuchi [111], which has been extended by Marciano 
and Rosner [ 112] to the atomic physics case. In that work a quantity analogous 
to T called S has been introduced, where S parameterizes the effect of new 
particles entering vacuum polarization loops in a weak isosopin conserving 
manner, while T parameterizes weak isosopin breaking effects. This new parame- 
ter S is sensitive to new physics at the TeV scale, and in particular is quite large, 
about 2, for technicolour theories [113]. As an example of  this parameterization, 
one can show, following Ref. [112], that the W mass, which has been measured 
to be (80.14 ___0.31) GeV, obeys: 

m w  = (80.20 - 0.29S + 0.45T) GeV. 

With the neglect of  S, one can see that this provides an upper bound to the top 
quark mass, but with the inclusion of  S one can only bound a range of  S and T. 
However, when the same analysis is applied to atomic physics, one finds for the 
radiatively corrected weak charge. 

Qw = - (73 .20  _+ 0.13 - 0.8S - 0.005T). 

The remarkable feature of this equation is that the T dependence is almost 
completely negligible. This follows from a cancellation of  the T dependence of  
the overall scaling factor Onew with an opposite dependence on T in the square of  
the sine of the Weinberg angle. The result is that even without a precise 
determination of the top quark mass, atomic PNC gives an unambiguous 
prediction sensitive only to the new physics in S. The insensitivity of  atomic PNC 
results to the top quark mass was found also in a somewhat different analysis by 
Sandars [114]. He made use of the fact that the Z boson mass is now well-known 
experimentally and formed the product GFQw M 2  which he found to be essen- 
tially insensitive to sin 2 0 w for plausible values. In fact, this product has a 
minimum with respect to variations in sin 2 0 w for a ratio N / Z  close to that for 
heavy atoms. At this point one sees that technicolour theories are in some 
trouble, since they lead to a value of  -74 .8  for the weak charge Qw, which is 
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known from atomic physics experiments to be -71 .04+  58 +0.88. This dis- 
crepancy of more then 2 experimental standard deviations from the prediction of 
technicolour theories is at present the most serious challenge to such theories. 
The only other electroweak experiment equally sensitive to S involves measuring 
asymmetries in the decay of the Z, and while important to pursue, is at present 
not of high accuracy. 

There is one other way new particle physics can influence atomic PNC. This is 
any tree-level process involving new Z's, that in general couple to quarks and 
leptons differently from the Z. Because the standard model is quite successful, these 
new Z's are in general quite heavy: an illustrative example from an SO(10) model 
[1 i 5] has a Zz boson which changes Q w by 2 2 AQw = 84m w/mz. A value of about 
500 GeV for the mass of this particle could explain the discrepancy discussed above 
if the experimental value does not change. As with S, atomic PNC is particularly 
sensitive to this kind of new physics compared with other particle physics 
experiments. However, it is important to stress that in order to sort out possible 
new physics, all electroweak experiments should be pushed to the highest accuracy 
possible. The main point of this paper is that atomic theory has advanced to a 
point where the caesium experiment can play an important role in this process. 

5. Conclusion and outlook 

We have seen that atomic physics experiments provide valuable complements to 
high-energy physics experiments in the study of weak interaction. Future exper- 
imental developments are expected to lead to increased accuracy for Cs, as well 
as for the other heavy atoms, T1, Pb and Bi, for which PNC effects are studied. 
This will push atomic theory to its l imits-  we can note that the inclusion of 
thousands of pair excitations, as in the recent Cs calculation [32], with 20-25 
basis function used to express each orbital symmetry, corresponds to several 
million configurations. To reach an accuracy of 0.1%, which would be desirable 
in the not too distant future, requires the inclusion of triple excitations, clearly 
would be even more demanding. 

In view of the significance of the results, it is important that as many 
different methods as possible are applied to the calculations. So far, the extensive 
machinery developed by quantum chemists has not been applied to this problem. 
One obstacle on the way is the need for a relativistic treatment. In addition, the 
contact nature of the weak interaction demands the inclusion of high-energy 
unperturbed orbitals for the representation of the quite localized orbital correc- 
tions - more than one published result has suffered from insufficient basis sets. 
However, with the rapid developments of computing facilities and progams, we 
expect these problems to be overcome in the future. 

In attempts to circumvent the need for atomic theory, experiments are also 
underway to study PNG in a sequence of isotopes of an element, such as Sm 
[116] and Cs [117], following the suggestion by [118]. The motivation for these 
studies is that the electronic wavefunction is determined mainly by the nuclear 
charge (and to a small extent by its distribution) and can be expected to be 
essentially the same for all the isotopes of an element. The dependence on the 
atomic structure can then be factored out and the results would be proportional 
to Qw. However, these experiments may shift the burden to nuclear theorists: the 
changes in neutron distribution may affect the result at the desired level of 
accuracy [ 119], but cannot be obtained directly from experiment, in contrast to 
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changes in nuclear charge distribution, which may be deduced from optical 
isotope shift studies. 

The increased experimental accuracy may also make possible unambiguous 
observation of the nuclear spin-dependent terms (cf. Ref. [18]), in particular 
those caused by a "nuclear anapole moment", discussed in Sect. 2.1. Further, the 
PNC electron-electron interaction remains to be observed. With its smaller Z 
enchancement, it is clear that it would be observed only in experiments designed 
specifically to look for this interaction. Early works suggested experiments 
helium-like systems [120], as well as on diatomic molecules [121], where PNC 
effects would be enhanced due to the existence of nearby levels of opposite parity 
[122-123]. However, no such experiments appear to have been performed. 

A more direct need for molecular calculations arises from the careful 
experiments on T1F [ 124], searching for effects that violate symmetry under both 
parity and time reversal. This closely related problem has been studied also in 
atomic systems and recent reviews on the motivation and requirements for these 
experiments and calculations have been given elsewhere [125]. 

With the effect of the weak interaction in atomics systems well established, 
we may proceed with the speculation that this asymmetry in fundamental 
interactions may be responsible for the observed handedness in biomolecules 
(e.g. the famous double helix of the DNA carrying our genetic codes is always 
right-handed). This was first suggested by Vester and Ulbricht [126] and has 
recently been discussed e.g. in Ref. [127]. This "mono-chirality" may result from 
different mechanisms. The weak interaction would lead to slightly different 
energies between the two forms of a molecule. Theoretical estimates of this effect 
[128] indicate that it is too small to be responsible for the biomolecular 
handedness. Another possibility is a different reaction rate for the left- and 
right-handed forms of a molecule when exposed to polarized electrons, e.g., from 
the fl-decay of ~4C, which was present in the early universe. However, the 
experimental situation is somewhat unclear. Whereas some experiments have 
found asymmetries [129] others have failed to observe such effects [130] and, 
where observed, the effects have been much larger than quantitative theoretical 
predictions [ 131]. Thus, the answer to our speculative question will have to await 
further experimental confirmation, as well as development in other fields, such as 
models for the early universe and evolutionary biology, which are outside the 
scope of ab initio atomic or molecular calculations. 
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